| 可再生氢能应用前景 |
| 当前位置: 论文资料 >> 理学论文 >> 理学其它 >> 可再生氢能应用前景 | ||
| 可再生氢能应用前景 | ||||
|
6. 小结 本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到 了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析, 总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性, 对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具 有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶 段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机 废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还 有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题 已经为我们展开了一个良好的前景. 致谢: 本文属<可再生氢能在香港的应用研究>项目, 该课题受香港中华电力公司(CLP)及香港 特别行政区政府资助, 在此表示感谢! 参考文献: [1] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain its Share in the World Energy Market for the 21st Century [J]. Renewable Energy 2001, 24(2): 259-274. [2] Abdallah MAH, Asfour SS, Veziroglu TN. Solar-Hydrogen Energy System for Egypt [J], International Journal of Hydrogen Energy 1999, 24(6): 505-517. [3] Mao.ZQ. Hydrogen---a Future Clean Energy in China [A], Symposium on Hydrogen Infrastructure Technology for Energy & Fuel Applications, November 18, 2003. The Hong Kong Polytechnic University, Hong Kong, 27-33. [4] Steinfeld A, Palumbo R. Solar thermochemical process technology [J], Encyclopedia of Physical Science & Technology 2001, 15: 237-256. [5] Middleton P, Larson R, Nicklas M, Collins B. Renewable Hydrogen Forum: A summary of expert opinions and policy recommendations [Z], National Press Club, Washington DC, October 1, 2003. [6] Wen Feng, Shujuan Wang, Weidou Ni, Changhe Chen, The future of hydrogen infrastructure for fuel cell vehicles in China and a case of application in Beijing [J], International Journal of Hydrogen Energy 2004, article in press. [7] Rosa V.M, Santos M.B.F, Silva E.P.D, New materials for water electrolysis diaphragms [J], International Journal of Hydrogen Energy 1995, 20(9): 697-700. [8] Vermeiren P, Adriansens W, Moreels J.P, Leysen R. Evaluation of the zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries [J], International Journal of Hydrogen Energy 1998, 23(5): 321-324. [9] Hu W.K, Cao X.J, Wang F.P, Zhang Y.S. Short Communication: a novel cathode for alkaline water electrolysis [J], International Journal of Hydrogen Energy 1997,22: 441-443. [10] Schiller G, Henne R, Mohr P, Peinecke V. High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer [J], International Journal of Hydrogen Energy 1998,23: 761-765. [11] Hijikata T. Research and development of international clean energy network using hydrogen energy (WE-NET) [J], International Journal of Hydrogen Energy2002, 27(2): 115-129. [12] Kumar G.S, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells [J], Electrochimica Acta 1995, 40(3): 285-290. [13] Hirano S, Kim J, Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes [J], Electrochimica Acta 1997, 42(10): 1587-1593. [14] Hayre R, Lee S.J, Cha S.W, Prinz F.B. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading [J], Journal of Power Sources 2002, 109(2): 483-493. [15] Guo Q.H, Pintauro P.N, Tang H, Connor S. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J], Journal of Membrane Science 1999, 154(2): 175-181. [16] Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene) synthesis, proton conduction and methanol permeation [J], Journal of Membrane Science 2000, 166(2):189-197. [17] Ghany N.A.A, Kumagai N, Meguro S, Asami K, Hashimoto K, Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis [J], Electrochimica Acta 2002, 48(1): 21-28. [18] Green MA, Recent developments in photovoltaics [J], Solar Energy 2004, 76(1): 3-8. [19] Ackermann T, Soder L, An overview of wind energy-status 2002 [J], Renewable and Sustainable Energy Reviews 2002, 6(1): 67-128. [20] Padro C.E.G, Putsche V. Survey of the economics of hydrogen technologies [Z], NREL/TP-570-27079, September 1999, National Renewable Energy Laboratory, U.S.A. [21] Kogan A, Direct solar thermal splitting of water and on site separation of the products 1: theoretical evaluation of hydrogen yield [J], International Journal of Hydrogen Energy 1997, 22(5): 481-486. [22] Kogan A, Direct solar thermal splitting of water and on-site separation of the products-II: Experimental feasibility study [J], International Journal of Hydrogen Energy 1998, 23(2): 89-98. [23] Baykara S.Z, Experimental solar water thermolysis [J], International Journal of Hydrogen Energy, 2004, article in press. [24] Harvey, S., Davidson, J.H., Fletcher, E.A, Thermolysis of hydrogen sulfide in the temperature range 1350 to 1600K [J], Ind. Eng. Chem. Res 1998, 37: 2323-2332. [25] Steinfeld A, Spiewak I, Economic evaluation of the solar thermal co-production of Zinc and synthesis gas [J], Energy Conversion and Management 1998, 39(15): 1513-1518. [26] Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J. Solar-processed metals as clean energy carriers and water-splitters [J], International Journal of Hydrogen Energy 1998, 23(9): 767-774. [27] Haueter P, Moeller S, Palumbo R, Steinfeld A, The production of Zinc by thermal dissociation of Zinc oxide-solar chemical reactor design [J], Solar Energy 1999, 67(1-3): 161-167. [28] Lede J, Elorza-Ricart E, Ferrer M, Solar thermal splitting of Zinc oxide: a review of some of the rate controlling factors [J], Journal of Solar Energy Engineering 2001, 123(2): 91-97. [29] Steinfeld A, Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions [J], International Journal of Hydrogen Energy 2002, 27(6): 611-619. [30] Sakurai, M., Nakajima, H., Amir, R., Onuki, K., Shimizu, S, Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J], International Journal of Hydrogen Energy 2000, 25(7): 613-619. [31] Sakurai, M., Gligen, E., Tsutsumi, A., Yoshida K, Solar UT-3 Thermochemical Cycle for hydrogen production [J], Solar Energy 1996, 57(1): 51-58. [32] //www.pre.ethz.ch/cgi-bin/main.pl?research?project6 [33] //solar.web.psi.ch/daten/projekt/elprod/elprod.html [34] Babu BV, Chaurasia AS, Parametric Study of Thermal and Thermodynamic Properties on Pyrolysis of Biomass in Thermally Thick Regime [J], Energy Conversion and Management 2004, 45: 53-72. [35] Bridgwater AV, Peacocke GVC. Fast Pyrolysis Processes for biomass [J], Renewable and Sustainable Energy Reviews 2000, 4(1):1-73. [36] Williams.Paul T., Brindle. Alexander J. Catalytic Pyrolysis of Tyres: Influence of Catalyst Temperature [J], Fuel 2002;81(18): 2425-2434. [37] Chen G, Andries J, Spliethoff H. Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel Gas Production [J], Energy Conversion and Management 2003; 44(14): 2289-2296. [38] Sutton.D, Kelleher B, Ross JRH, Catalytic Conditioning of Organic Volatile Products Produced by Peat Pyrolysis [J], Biomass and Bioenergy 2002; 23(3): 209-216. [39] //www.eere.energy.gov/hydrogenandfuelcells/hydrogen/pdfs/danz_biomass.pdf [40] Carlo N.H, Andre P.C.F, Future Prospects for Production of Methanol and Hydrogen From Biomass [J], Journal of Power Sources 2002, 111(1): 1-22. [41] Milne TA, Abatzoglou N, Evans RJ. Biomass Gasifier _Tars_: Their Nature, Formation, and Conversion [Z], NREL/TP- 570-25357, 1998, National Renewable Energy Laboratory, USA. [42] Demirbas A, Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield [J], Energy Conversion and Management 2002, 43: 897-909. [43] Zhang RQ, Brown RC, Suby A, Cummer K, Catalytic destruction of tar in biomass derived producer gas [J], Energy Conversion and Management 2004, article in press. [44] Bowen. D.A, Lau F, Zabransky R, Remick R, Slimane R, Doong S, Techno-Economic Analysis of hydrogen production by gasification of biomass [Z], NREL FY 2003 progress Report, National Renewable Energy Laboratory, USA, 2003. [45] Adschiri T, Hirose S, Malaluan R, Arai K, Noncatalytic Conversion of Cellulose in Supercritical and Subcritical Water [J], J Chem Eng 1993,26: 676–80. [46] Hao Xiaohong, Guo Liejie, A Review on Investigation of Hydrogen Production by Biomass Catalytic Gasification in Supercritical Water [J], Journal of Chemical Industry and Engineering (China) 2002, 53: 221-228. [47] Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen Production From Glucose Used as a Model Compound of Biomass Gasified in Supercritical Water [J], International Journal of Hydrogen Energy 2003, 28(1): 55-64. [48] Xiaodong X, Yukihiko M, Jonny S, Michael JA, Jr. Carbon-catalyzed gasification of organic feedstocks in supercritical water [J]. Industrial & Engineering Chemistry Research 1996, 35(8): 2522-2530. [49] Antal MJ, Jr, Xu XD, Hydrogen Production From High Moisture Content Biomass in Supercritical Water [Z], Proceedings of the 1998 U.S.DOE Hydrogen Program Review, NREL/CP-570-25315, 1998, National Renewable Energy Laboratory, USA. [50] Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M, Hydrothermal gasification of biomass and organic wastes [J], Journal of Supercritical Fluids 2000, 17(2): 145-153. [51] Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M, Hydrothermal gasification of biomass and organic wastes [J], Journal of Supercritical Fluids 2000, 17(2): 145-153. [52] Yoshida T, Matsumura Y, Gasification of Cellulose, Xylan, and Lignin Mixtures in Supercritical Water [J]. Industrial and Engineering Chemistry Research 2001, 40: 5469–5474. [53] Li G, Feasibility of large-scale offshore wind power for Hong Kong – a preliminary |
||||
|
|
||||