当前位置: 论文资料 >> 理学论文 >> 数学 >> 变式教学中习题引申应注意的几个问题
变式教学中习题引申应注意的几个问题


  引申2 平面内有n条直线,其中任何两条不平行,任何三条不过同一点,该n条直线把平面分成f(n)个区域,则f(n+1)=f(n)+_______________. 
  引申3 平面内有n条直线,其中任何两条不平行,任何三条不过同一点,该n条直线把平面分成f(n)个区域,求f(n). 
  上述引申3在引申1与引申2的基础上很容易掌握,但若没有引申1与引申2而直接给出引申3,学生解决起来就非常困难,对树立学生的学习信心是不利的,从而也降低了学习的效率.
 4 提倡让学生参与题目的引申 
  引申并不是教师的“专利”,教师必须转变观念,发扬教学民主,师生双方密切配合,交流互动,只要是学生能够引申的,教师绝不包办代替.学生引申有困难的,可在教师的点拨与启发下完成,这样可以调动学生学习的积极性,提高学生参与创新的意识. 
  如在学习向量的加法与减法时,有这样一个习题:化简 + + .
(试验修订本下册P.103习题5.2的第6小题)在引导学生给出解答后,教师提出如下思考: 
  ①你能用文字叙述该题吗? 
  通过讨论,畅所欲言、补充完善,会有: 
  引申1 如果三个向量首尾连接可以构成三角形,且这三个向量的方向顺序一致(顺时针或逆时针),则这三个向量的代数和为零. 
  ②大家再讨论一下,这个结论是否只对三角形适合? 
  通过讨论学生首先想到对四边形适合,从而有 
  引申2  + + + =0. 
  ③大家再想一想或动笔画一画满足引申2的这四个向量是否一定可构成四边形? 
  在教师的启发下不难得到结论:四个向量首尾相连不论是否可形成四边形,只要它们的方向顺序一致,则这四个向量的代数和为零. 
  ④进一步启发,学生自己就可得出n条封闭折线的一个性质: 
  引申3  + + +…+ + =0. 
  最后再让学生思考若把 + + =0改为任意的三个向量a+b+c=0,则这三个向量是否还可以构成三角形?这就是P.103习题5.2的第7小题,学生很容易得出答案.至此,学生大脑中原有的认知结构被激活,学生的求知欲被唤起,形成了教师乐教、学生乐学的良好局面.
  5 引申题目的数量要有“度” 
  引申过多,不但会造成题海,会增加无效劳动和加重学生的负担,而且还会使学生产生逆反心理,对解题产生厌烦情绪.笔者在一次听课时,有位青年教师对一道例题连续给出了10个引申,而且在难度上逐渐加大,最后引申的题目与例题无论在内容上还是在解题方法上都相关不大,这样的引申不仅对学生学习本节课内容没有帮助,而且超出了学生的接受能力,教学效果也就会大打折扣. 
  综上所述,变式教学中习题的引申方式、形式及内容,要根据教材的内容和学生的情况来安排,因材施教是课堂教学永远要坚持的原则,恰当合理的引申,可使学生一题多解和多题一解,有助于学生把知识学活,有助于学生举一反三、触类旁通,有助于学生产生学习的“最佳动机”和激发学生的灵感,它能升华学生的思维,培养学生的创新意识.

 参考文献
 1 张宪铸一道向量习题的推广及应用数学通讯,2001,17

上一页  [1] [2]